Connect with us

Latest Posts

Human ureteric bud organoids recapitulate branching morphogenesis and differentiate into practical accumulating duct cell varieties

Published

on

ADVERTISEMENT

Human ureteric bud organoids recapitulate branching morphogenesis and differentiate into practical accumulating duct cell varieties

  • Kim, J., Koo, B. Okay. & Knoblich, J. A. Human organoids: mannequin methods for human biology and medication. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lehmann, R. et al. Human organoids: a brand new dimension in cell biology. Mol. Biol. Cell 30, 1129–1137 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McMahon, A. P. Improvement of the mammalian kidney. Curr. High. Dev. Biol. 117, 31–64 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Takasato, M. et al. Kidney organoids from human iPS cells comprise a number of lineages and mannequin human nephrogenesis. Nature 526, 564–568 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Morizane, R. et al. Nephron organoids derived from human pluripotent stem cells mannequin kidney improvement and damage. Nat. Biotechnol. 33, 1193–1200 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Taguchi, A. & Nishinakamura, R. Larger-order kidney organogenesis from pluripotent stem cells. Cell Stem Cell 21, 730–746 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kuraoka, S. et al. PKD1-dependent renal cystogenesis in human induced pluripotent stem cell-derived ureteric bud/accumulating duct organoids. J. Am. Soc. Nephrol. 31, 2355–2371 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zeng, Z. et al. Era of patterned kidney organoids that recapitulate the grownup kidney accumulating duct system from expandable ureteric bud progenitors. Nat. Commun. 12, 3641 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mae, S. I. et al. Growth of human ipsc-derived ureteric bud organoids with repeated branching potential. Cell Rep. 32, 107963 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Howden, S. E. et al. Plasticity of distal nephron epithelia from human kidney organoids permits the induction of ureteric tip and stalk. Cell Stem Cell 28, 671–684 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bens, M. et al. Corticosteroid-dependent sodium transport in a novel immortalized mouse accumulating duct principal cell line. J. Am. Soc. Nephrol. 10, 923–934 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Prie, D. et al. Position of adenosine on glucagon-induced cAMP in a human cortical accumulating duct cell line. Kidney Int. 47, 1310–1318 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fejes-Toth, G. & Naray-Fejes-Toth, A. Differentiation of renal beta-intercalated cells to alpha-intercalated and principal cells in tradition. Proc. Natl Acad. Sci. USA 89, 5487–5491 (1992).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Qiao, J., Sakurai, H. & Nigam, S. Okay. Branching morphogenesis unbiased of mesenchymal–epithelial contact within the creating kidney. Proc. Natl Acad. Sci. USA 96, 7330–7335 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Grote, D., Souabni, A., Busslinger, M. & Bouchard, M. Pax 2/8-regulated Gata3 expression is important for morphogenesis and steerage of the nephric duct within the creating kidney. Improvement 133, 53–61 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Barak, H., Rosenfelder, L., Schultheiss, T. M. & Reshef, R. Cell destiny specification alongside the anterior-posterior axis of the intermediate mesoderm. Dev. Dyn. 232, 901–914 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Loh, Okay. M. et al. Mapping the pairwise decisions main from pluripotency to human bone, coronary heart, and different mesoderm cell varieties. Cell 166, 451–467 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ornitz, D. M. & Itoh, N. The fibroblast development issue signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 4, 215–266 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Perantoni, A. O. et al. Inactivation of FGF8 in early mesoderm reveals a necessary position in kidney improvement. Improvement 132, 3859–3871 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Warga, R. M., Mueller, R. L., Ho, R. Okay. & Kane, D. A. Zebrafish Tbx16 regulates intermediate mesoderm cell destiny by attenuating Fgf exercise. Dev. Biol. 383, 75–89 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mae, S. I. et al. Era of branching ureteric bud tissues from human pluripotent stem cells. Biochem. Biophys. Res. Commun. 495, 954–961 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bohnenpoll, T. et al. Tbx18 expression demarcates multipotent precursor populations within the creating urogenital system however is solely required throughout the ureteric mesenchymal lineage to suppress a renal stromal destiny. Dev. Biol. 380, 25–36 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Attia, L., Schneider, J., Yelin, R. & Schultheiss, T. M. Collective cell migration of the nephric duct requires FGF signaling. Dev. Dyn. 244, 157–167 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Atsuta, Y. & Takahashi, Y. FGF8 coordinates tissue elongation and cell epithelialization throughout early kidney tubulogenesis. Improvement 142, 2329–2337 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sanchez-Ferras, O. et al. A coordinated development of progenitor cell states initiates urinary tract improvement. Nat. Commun. 12, 2627 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pohl, M., Stuart, R. O., Sakurai, H. & Nigam, S. Okay. Branching morphogenesis throughout kidney improvement. Annu. Rev. Physiol. 62, 595–620 (2000).

    Advertisements

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yuri, S., Nishikawa, M., Yanagawa, N., Jo, O. D. & Yanagawa, N. In vitro propagation and branching morphogenesis from single ureteric bud cells. Stem Cell Rep. 8, 401–416 (2017).

    CAS 
    Article 

    Google Scholar 

  • Vega, Q. C., Worby, C. A., Lechner, M. S., Dixon, J. E. & Dressler, G. R. Glial cell line-derived neurotrophic issue prompts the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc. Natl Acad. Sci. USA 93, 10657–10661 (1996).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Michos, O. et al. Kidney improvement within the absence of Gdnf and Spry1 requires Fgf10. PLoS Genet. 6, e1000809 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Lu, B. C. et al. Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat. Genet. 41, 1295–1302 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bush, Okay. T. et al. TGF-β superfamily members modulate development, branching, shaping, and patterning of the ureteric bud. Dev. Biol. 266, 285–298 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Maeshima, A., Vaughn, D. A., Choi, Y. & Nigam, S. Okay. Activin A is an endogenous inhibitor of ureteric bud outgrowth from the Wolffian duct. Dev. Biol. 295, 473–485 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Michos, O. et al. Discount of BMP4 exercise by gremlin 1 permits ureteric bud outgrowth and GDNF/WNT11 suggestions signalling throughout kidney branching morphogenesis. Improvement 134, 2397–2405 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chi, X. et al. Ret-dependent cell rearrangements within the Wolffian duct epithelium provoke ureteric bud morphogenesis. Dev. Cell 17, 199–209 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Costantini, F. GDNF/Ret signaling and renal branching morphogenesis: from mesenchymal indicators to epithelial cell behaviors. Organogenesis 6, 252–262 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tsujimoto, H. et al. A modular differentiation system maps a number of human kidney lineages from pluripotent stem cells. Cell Rep. 31, 107476 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Uchimura, Okay., Wu, H., Yoshimura, Y. & Humphreys, B. D. Human pluripotent stem cell-derived kidney organoids with improved accumulating duct maturation and damage modeling. Cell Rep. 33, 108514 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Unbekandt, M. & Davies, J. A. Dissociation of embryonic kidneys adopted by reaggregation permits the formation of renal tissues. Kidney Int. 77, 407–416 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Hao, Y. et al. Built-in evaluation of multimodal single-cell knowledge. Cell 184, 3573–3587 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lake, B. B. et al. An atlas of wholesome and injured cell states and niches within the human kidney. Preprint at (2021).

  • Kleyman, T. R. & Cragoe, E. J. Jr. Amiloride and its analogs as instruments within the research of ion transport. J. Membr. Biol. 105, 1–21 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chen, L., Chou, C. L. & Knepper, M. A. A complete map of mRNAs and their isoforms throughout All 14 renal tubule segments of mouse. J. Am. Soc. Nephrol. 32, 897–912 (2021).

  • Werth, M. et al. Transcription issue TFCP2L1 patterns cells within the mouse kidney accumulating ducts. eLife 6, e24265 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Park, J. et al. Single-cell transcriptomics of the mouse kidney reveals potential mobile targets of kidney illness. Science 360, 758–763 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Blomqvist, S. R. et al. Distal renal tubular acidosis in mice that lack the forkhead transcription issue Foxi1. J. Clin. Make investments. 113, 1560–1570 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Toka, H. R., Toka, O., Hariri, A. & Nguyen, H. T. Congenital anomalies of kidney and urinary tract. Semin. Nephrol. 30, 374–386 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Kuure, S. & Sariola, H. Mouse fashions of congenital kidney anomalies. Adv. Exp. Med. Biol. 1236, 109–136 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shah, M. M. et al. The instructive position of metanephric mesenchyme in ureteric bud patterning, sculpting, and maturation and its potential potential to buffer ureteric bud branching defects. Am. J. Physiol. Renal Physiol. 297, F1330–F1341 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schwartz, G. J. et al. Acid incubation reverses the polarity of intercalated cell transporters, an impact mediated by hensin. J. Clin. Make investments. 109, 89–99 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schwartz, G. J., Barasch, J. & Al-Awqati, Q. Plasticity of practical epithelial polarity. Nature 318, 368–371 (1985).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Christensen, B. M. et al. Adjustments in mobile composition of kidney accumulating duct cells in rats with lithium-induced NDI. Am. J. Physiol. Cell Physiol. 286, C952–C964 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Davies, J. A., Unbekandt, M., Ineson, J., Lusis, M. & Little, M. H. Dissociation of embryonic kidney adopted by re-aggregation as a technique for chimeric evaluation. Strategies Mol. Biol. 886, 135–146 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • ADVERTISEMENT

    Trending

    Advertisements

    Copyright © 2022 strongbat.com. Theme by The Nitesh Arya.